UU文学 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

一小时后,方鸿再次来到了量化资本总部。

陈宇的助理前来接待他,领着他向着招待室走去,并说道:“方先生,陈总正在技术部开会,您稍等,我去知会他一声。”

方鸿如是说道:“不用,直接带我去他的会议室,我去旁听一下。”

闻言,陈宇的助理拿出手机给他发了个信息,很快陈宇就回消息,这位助理转而看向方鸿微笑道:“方先生,您这边请。”

不一会儿,方鸿便来到了陈宇所在的会议室,在场有三十多号人,看到走进来一个陌生的青年,大家都颇为好奇的打量了一下。

他们发现方鸿跟自己老板陈宇的年龄差不多,但不同的是,他们从方鸿身上感受到了一种在这个年龄阶段所没有的上位者气场,这让大家意识到这个陌生青年不是一般人。

此刻,陈宇看到方鸿与之相视点头致意,后者微微一笑便在会议室里默默地找了个位置坐下旁听。

陈宇收回目光,转而环视一众与会者继续说道:“……对于人工智能的基本实现思路,机器学习的过程,简单的说就是电脑到底是如何自我学习的。”

“因为计算机的一切运算,其基础都是数学运算,所以任何机器学习的思路,归根结底就是把一个实际问题转化为数学问题。为了让计算机能够预测或者识别什么东西,就需要先构造一个数学函数,这个数学函数就叫预测函数。”

一般人可能很难想象,量化资本作为一家多元金融公司,在大多数股民眼里甚至就是一家非银金融投资公司,掌门人也是做投资交易的,却在公司里谈论这些内容。

不过方鸿是很淡定,这其实很正常,华尔街就是汇集了一群顶尖的数学家、物理学家。

此刻,陈宇转而看向会议屏幕道:“比如预测一个吃饱饭的函数,就可以描述成[吃饱=n碗饭],这个预测计算到底准不准?一个人吃几碗饭和吃饱之间的关系有是什么?是吃一碗还是三碗才能吃的饱?”

“这就需要实际去试一下,如果预测是两碗饭吃饱,但实际要吃三碗饭才饱,其中一碗的误差就是损失,描述这个损失的函数即[3-n=1],这就是损失函数。”

“机器学习就是通过不断尝试让这个误差达到最小的过程,寻找损失最小值的方法通常是梯度下降,一旦我们找到了最小误差,就会发现当[n=3]的时候误差最小,也就是机器学习找到了真实的规律,就成功解决问题了。”

陈宇再度看向众人道:“所以,机器学习就是在寻找数据的规律,大部分时候,它的本质就是把数据投射到坐标系里,然后用计算机通过数学方法画一条线区分或者模拟这些数据的过程。”

“不同的机器学习方法,就是在使用不同的数学模型来投射数据和画线,从上世纪到现在,不同的流派找到了不同的方法,擅长于解决不同的问题,影响比较巨大的有这么几种:线性回归和逻辑回归、k近邻、决策树、支持向量机、贝叶斯分类以及感知机等。”

方鸿坐在一边旁听默默不言,他也算是计算机科学领域的半个业内人士,更有前世记忆先知先觉的优势,此刻旁听也是毫无压力。

陈宇他们走的显然就是神经网络这个流派,不过也向前推进了一步,进入到了强化深度学习,而神经网络的前身就是感知机。

这三个名词本质上都是在玩同一个东西。

却说此刻,陈宇缓缓地说道:“深度学习最基本的思想就是模拟大脑神经元的活动方式来构造预测函数和损失函数,既然叫神经网络,必然和人的大脑神经元有一定的关系,单个感知机的算法机制其实就是在模拟大脑神经元的运行机制。”

屏幕上呈现一张大脑神经元的结构图。

“这是一个神经元,大家都知道它的结构,这是树突,这是轴突,其它神经元发过来的信号通过树突进入神经元,再通过轴突发射出去,这就是一个神经元的运行机制。”

“现在我们把神经元的树突变成输入值,把轴突变成一个输出值,于是这个神经元就变成了这样的一张图。把它转化为一个数学公式就更简单了,[x1+x2+x3=y],就是这个公式。”

“没错,就这么简单。最复杂的事物往往是有最简单的事物创造的,简单的0和1就塑造了庞大的计算机世界,四种核苷酸就空置了纷繁复杂的生命现象,一个简单的神经元反射就塑造了我们的大脑。”

陈宇停顿了一会儿,再度环视众人:“问题的关键不是基本结构有多简单,而是我们如何使用这个基本结构来构建庞大的世界,神经元之所以神奇是因为它有一个激活机制,即所谓的阈值。”

“神经元的每一个树突不断的接受输入信号,但并不是每一个输入信号都能让轴突输出信号,每一个树突在输入时所占的权重也不一样。”

“比如你追求一个妹子,你孜孜不倦地采取各种行动,今天送了她一束花,明天请她吃大餐,但你发现这些行动都打动不了她。直到有一天伱陪她逛了一天街,她忽然间就被打动了,答应做你女朋友,这说明什么?”

“说明并不是所有的输入权重都是一样的,在妹子那里可能逛街的权重最大,其次是效果的积累并非是一个线性渐进的过程,而是量变引起质变。”

“所有的输入在某一个点之前完全没效果,可一旦达到某个值就突然被激发了,所以,模仿神经元的这种激活特性,那么对刚才的公式做一下改造。”

“每个输入需要一定的权重,在前面加一个调节权重的系数[w],后面加一个常数方便更好地调整阈值,于是这个函数就变成了这个样子。”

方鸿也看向了会议大屏幕,是一个新的数学公式。

【w1x1+w2x2+w3x3+b=y】

陈宇看着屏幕里的公式说:“为了实现激活的过程,对输出值再作进一步的处理,增加一个激活函数,比如当x>1时,输出1;当x<1时,输出0,于是就成了这个样子。”

“不过这个函数看起来不够圆润,不是处处可导,因此不好处理,换成sigmoid函数,这样一个简单的函数就可以处理分类问题了。”

“单个的感知机,其实就是画了一条线,把两种不同的东西分开,单个感知机可以解决线性问题,但是对于线性不可分的问题却无能为力了,那意味着连最简单的异或问题都无法处理。”

异或问题对于在场的所有人包括方鸿都明白,这是计算机的基本运算之一。

这时,陈宇自我反问道:“异或问题处理不了,那岂不是判死刑的节奏?”

陈宇旋即自答:“很简单,直接用核函数升维。感知机之所以能变成现在的深度学习,就是因为它从一层变成了多层,深度学习的深度就是指感知机的层数很多,我们通常把隐藏层超过三层的神经网络就叫深度神经网络,感知机是如何通过加层搞定异或问题的?”

陈宇回头看向屏幕调取下一张幻灯图并说:“计算机有四大基本运算逻辑,与、或、非、异或,这个不用多讲了。如果我们把异或放在一个坐标系来表示就是这样的。”

“原点位置x是0,y是0,于是取0;x=1时,y=0,两者不同取1,通力,这儿也是1,而这个位置x、y都等于1,所以取0,在这张图上如果我们需要吧0和1分开,一条直线是做不到的。”

“怎么办?这就要看异或运算的本质了,数学上来说,异或运算其实一种复合运算,它其实可以通过其它的运算来得到,证明过程太复杂这里就不展开了。”

“如果我们能用感知机先完成括号里的运算,然后再把得出的结果输入到另一个感知机里边进行外面的这层运算,就可以完成疑惑运算了,然后异或问题就这么神奇的解决了,解决问题的同时顺带还解决了线性不可分的问题。”

“这说明什么?说明不管多么复杂的数据,通过加层的方式都可以拟合出合适的曲线将他们分开,而加层就是函数的嵌套,理论上来讲不管多么复杂的问题,我们都可以通过简单的线性函数组合出来,因此,理论上讲,多层的感知机能够成为通用的方法,可以跨领域地解决各类机器学习问题。”

……

UU文学推荐阅读:基地签到三年,成为全球特种之父小乞丐掀翻三界大叔,轻轻吻下乡知青:直接跟全家断绝关系末世降临,先杀圣母出狱了,大哥带我挥金如土我和渣夫都重生了被师父赶下山去祸害师姐我的异士界收徒之旅带着系统创家园风水鉴宝师重生82:从上山挖宝开始致富皇上非要为我废除六宫全能管家满级大佬替嫁以后桃源村的那些事念步舟木叶之最强装遁绝世医皇萧策叶雨欣一指成仙纨绔教师重生之时代先锋名侦探柯南之灰翼天使全家跟我一起穿越综艺大导演皇后摆烂吃瓜,疯批暴君宠疯了空间之最强世界跑商全民剑圣铁牛传奇绝世幻武黄泉路81号修真高手在校园游戏纪元:不死不灭终会成神星际制药指南别得罪!她是肖爷图来的小祖宗你一男兵,混进女兵连当教官?四合院之从51年开始娘娘驾到:安陵容重生后不想宫斗重生之御医爱你时我在尘埃娘娘她不想再努力了金陵春全民领主之我背靠地球清竹九歌重生小农女,空间仙泉有点甜山村小术士农家小旺媳重生位面俏娇妻龙颖之恋:爱与坚守全民御兽:我有隐藏进化路线系统
UU文学搜藏榜:重生之从做个好爸爸开始人在斗罗,开局被比比东活埋皇后成长手札掌欢完美战兵四合院:这个保卫员坏,痞,帅!梦游妈咪:谁是我爹地千树万树情话开疯狂从2000开始叫我女王(GL)赘婿之杀神回归县城青年之入世萌妻羞羞:BOSS,慢点撩!松小姐今天喝酒了吗千金大佬她slay全场小乞丐掀翻三界故事无限我真不想当女主角都市霸道医仙人间凶狗直播:穿书炮灰反成人生赢家皇上今天掉马了吗重生七零我靠种田暴富了叶君临李子染全文免费阅读笔趣阁退婚后我嫁给了渣男他叔头条婚约都市崛起之开启万界交易序列为零东京泡沫后的文娱时代逍遥渔场妖孽男神在花都最废女婿战神她在娱乐圈杀疯了胭尘团宠寨主种田忙开局我被系统一直坑地府微信群军少,有点喜欢你娱乐之中年危机错婚试爱病娇惹不起想支持乡村教育,却成为商业大佬逍遥明星娶夫不易[穿书]重回1981从退婚开始不凡兵王我的篮球生涯养废青梅的我,只好负起责仙履奇缘:睥睨魔天之嗜血魔妃你说命运我说无常
UU文学最新小说:末日异能之打造安全屋绑定仙农空间:我选择回村种田最后的十三城我演化的物种,都叫我创世神混黑混到身边全是美女穿越民国1920系统传我双修功我就是能力多点你们慌啥冰城一九四零利剑高悬从基层执纪开始平步青云重生:娱界王牌导演崛起路末世穿越:系统让我当一代人皇全球觉醒:道士天下吾乃万法真君,正的发邪重回年代:随身神树空间古今物资交换助我暴富开局帮助学生妹妹权利巅峰:从狱警开始无敌孽徒!速速下山牛笔去吧靠山倒下:我平步青云迷雾世界,从族长到众神之神权力巅峰:从扫黄开始穿越80年代:驯虎打猎做山霸王绝对反伤我不说,有种你就打死我我超凡蛊师,镇压天下边种田边炒股,我是村里的首富遗洛遭遇女儿前来认亲你让一个虚拟主播收容异常?乡村神医我的女友千金小姐我刚无敌,你就要跟我退婚?重生83打猎:开局碰到狼搭肩我在高武当农民,靠种田成大帝重生70年代,女知青们抢着嫁杀死那个傲娇女我们的少年时代:2怒喷作者,被变女丢进凤傲天爽文基金会:开局从大爷嘴里逃出生天铠甲:开局觉醒三星阴阳龙御兽:悟性逆天,开局须佐套大佛美食:随机摆摊,顾客疯狂抢购高武:家父五虎将,掠夺鸿蒙体!媳妇,公司上市了,你养的家呢?重生87退婚后,前妻一家急疯了沉睡千年醒来,749局找上门打造商业帝国,你选白月光后悔?日复千年,开局中奖二点二亿华娱:我是票房魔术师华娱:从跑男开始出发!禁神之下