UU文学 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 210 章 三角换元法之探

又一日,学堂之内,戴浩文再开新篇。

戴浩文缓声道:“今日为师要与尔等讲授另一奇妙之法,名曰三角换元法。”

众学子皆屏气凝神,静待下文。

李华拱手问道:“先生,此三角换元法又是何意?”

戴浩文微笑答道:“且看,若有方程 x2 + y2 = 1,吾等可设 x = cosθ,y = sinθ,此即为三角换元。”

张明面露疑惑:“先生,为何如此设之?”

戴浩文耐心解释道:“诸君可知三角函数之特性?cos2θ + sin2θ = 1,恰与吾等所给方程相符。如此设之,可使求解之路径明晰。”

王强问道:“那若方程为 x2 + 4y2 = 4,又当如何?”

戴浩文道:“此时,可设 x = 2cosθ,y = sinθ。如此,原方程便化为 4cos2θ + 4sin2θ = 4,正合题意。”

赵婷轻声道:“先生,此设颇有巧妙之处。”

戴浩文点头道:“然也。再看若有式子 √(1 - x2),吾等设 x = sinθ,则此式可化为 √(1 - sin2θ) = cosθ 。”

李华思索片刻道:“先生,此换元法于解题有何妙处?”

戴浩文笑曰:“其妙处众多。若求函数之最值,或化简复杂之式,皆能大显身手。譬如,求函数 x + √(1 - x2) 之值域。”

众学子纷纷低头思索。

戴浩文见状,提示道:“已设 x = sinθ,代入可得 sinθ + cosθ 。诸君可还记得两角和之公式?”

张明恍然道:“先生,吾记得,sinθ + cosθ = √2sin(θ + π\/4) 。”

戴浩文赞道:“善!由此可知其值域为 [-√2, √2] 。”

王强又问:“先生,若式中含分式,又当如何?”

戴浩文道:“莫急,若有式子 (1 - x2) \/ (1 + x2) ,设 x = tanθ ,则可化简求解。”

赵婷道:“先生,此中计算恐有繁难之处。”

戴浩文道:“不错,然只要步步为营,细心推之,必能解出。”

说罢,戴浩文在黑板上详细演示计算过程。

......

如此讲学许久,学子们对三角换元法初窥门径。

戴浩文又道:“今留数题,尔等课后细细思索。若有不明,来日再论。”

学子们领命而去,皆欲深研此奇妙之法。

数日之后,众学子再次齐聚学堂。

戴浩文扫视众人,缓声问道:“前几日所授三角换元法,尔等可有研习?”

学子们纷纷点头,李华率先说道:“先生,学生课后反复思索,略有心得,然仍有诸多不明之处。”

戴浩文微笑道:“但说无妨。”

李华拱手道:“若方程为 9x2 + 16y2 = 144,该如何进行三角换元?”

戴浩文答道:“可设 x = 4cosθ,y = 3sinθ。如此一来,原方程化为 16cos2θ + 9sin2θ = 144,与原式契合。”

王强接着问道:“先生,那对于形如 √(x2 - 2x + 1) 这样的式子,又当如何三角换元?”

戴浩文耐心解释道:“先将其化为 √((x - 1)2) = |x - 1| ,再设 x - 1 = t ,若要三角换元,可令 t = sinθ 。”

赵婷疑惑道:“先生,为何有时设 x = cosθ ,有时又设 x = sinθ 呢?”

戴浩文道:“此需视具体问题而定。若方程或式子之形式与 cosθ 或 sinθ 之特性相关,便按需设之。”

张明道:“先生,三角换元法在求定积分时可有应用?”

戴浩文点头道:“自然有。譬如求∫(0 到 1) √(1 - x2) dx ,设 x = sinθ ,则可将其化为三角函数之积分,求解更为简便。”

说罢,戴浩文在黑板上详细推演计算过程。

“诸位且看,如此换元之后,积分上下限亦需相应变换。”

学子们目不转睛,仔细聆听。

王强道:“先生,那若遇复杂之复合函数,可否用三角换元?”

戴浩文笑曰:“只要能寻得恰当之替换关系,未尝不可。就如函数 f(x) = √(2 - x - x2) ,先将其内部配方,再进行三角换元。”

戴浩文边讲边写,学子们不时点头,似有所悟。

李华又问:“先生,三角换元法与均值换元法可有相通之处?”

戴浩文沉思片刻,道:“二者皆为换元之法,旨在简化问题。均值换元常以均值为桥梁,而三角换元则借助三角函数之特性。然具体运用,需依题而定。”

......

戴浩文滔滔不绝,讲解不停,学子们或问或思,气氛热烈。

不知不觉,日已西斜。

戴浩文轻咳一声,道:“今日所讲,尔等回去需多加温习。数学之道,在于勤思多练,方能融会贯通。”

学子们躬身行礼:“谨遵先生教诲。”

众人散去,然对三角换元法之探索,方兴未艾。

又过数日,课堂之上。

戴浩文道:“今来考查一番尔等对三角换元法之掌握。”

遂出一题:求函数 y = x + √(2 - x2) 的最大值。

学子们纷纷提笔计算。

片刻后,赵婷起身道:“先生,学生设 x = √2 cosθ ,解得最大值为√2 。”

戴浩文微微颔首:“不错。那再看此题,若 x、y 满足 x2 + y2 - 2x + 4y = 0 ,求 x - 2y 的最大值。”

众学子再度陷入沉思。

张明道:“先生,可否设 x - 2y = z ,将其转化为直线与圆的位置关系,再用三角换元求解?”

戴浩文抚掌大笑:“妙哉!果能举一反三。”

就这样,在戴浩文的悉心教导下,学子们在三角换元法的海洋中不断探索,学问日益精进。

......

时光荏苒,学子们在数学的世界里越走越远,而三角换元法也成为他们攻克难题的有力武器。

UU文学推荐阅读:我的抗战不一般给秦皇汉武直播历史,他们破防了武道剑修林辰薛灵韵从西汉开始摆烂大夏第一武世子盘点华夏奇谋,我成了顶级谋士?靖难攻略听明朝大佬们吹牛扯淡嫡妃当宠汉室风云录抗战兵王之叫我魏和尚水浒之扈家庄崛起红楼第一公子九纹龙史进只会割地送儿媳,我黄袍加身你哭啥安史之乱:我为大唐改命汉末:从交州开始制霸科幻天庭,大秦我包揽金榜逍遥小长工大明:带着老朱去穿越三国之水浒点将三国:让你镇压反贼,没让你当反贼三国从救糜夫人开始大汉女副将赝品太监流不尽的血三国:组建最强武将集团魔法朋克大唐第一衙内盛宠毒女风华我的帝国无双我在曹营当仓官我怀疑师妹是修仙者大明优秀青年日月光明:打造巅峰大明妙影别动队伸什么冤,全拉出去斩了开局成为诸葛亮师弟抗战:签到军事基地成晋西北霸主天国拯救:骑士之途南明太子复仇录绯色豪门:高冷总裁私宠妻海权时代红楼大贵族决死军师傻驸马九皇霸爱:爱妃十三岁抗日之战狼穿越到骨傲天新明史
UU文学搜藏榜:三国之水浒点将三国:让你镇压反贼,没让你当反贼三国从救糜夫人开始大汉女副将赝品太监流不尽的血三国:组建最强武将集团我的抗战不一般靖难攻略魔法朋克大唐第一衙内盛宠毒女风华武道剑修林辰薛灵韵我的帝国无双我在曹营当仓官我怀疑师妹是修仙者大明优秀青年日月光明:打造巅峰大明听明朝大佬们吹牛扯淡妙影别动队伸什么冤,全拉出去斩了开局成为诸葛亮师弟抗战:签到军事基地成晋西北霸主天国拯救:骑士之途南明太子复仇录嫡妃当宠绯色豪门:高冷总裁私宠妻海权时代红楼大贵族决死军师傻驸马汉室风云录抗战兵王之叫我魏和尚九皇霸爱:爱妃十三岁抗日之战狼从西汉开始摆烂穿越到骨傲天新明史一等战功崇祯十七年秋我的炼金工坊人在大唐,奶奶是则天女帝水浒之扈家庄崛起三国之开局签到送李元霸三国:狱中讲课,我教曹操当奸雄造反,还不是你们逼的明月照山河三国:武力升满,开局杀穿草原医道留香红楼第一公子
UU文学最新小说:屈尊归来我在大宋当苟王开局被老朱绑架,我反手踹他大胯殿下,求你当个人纨绔子弟搅动天下风云大明:爷爷别哭,你大孙回来了!三国:从凉州辅佐刘备红楼之携花归天运不仁从七品小官到朝堂大佬我有了无限穿越的能力赤眼狼兵无敌九皇子朕,九五至尊,立志砍死太上皇!残唐桃源传穿越古代,穷屌丝的人生逆袭诸葛会物理孟德挡不住大明:朱元璋假死,我选择登基!大唐修仙:公主居然是我的小师妹臣退了,陛下别哭着来求我穿越之逆袭为帝水浒:开局怒杀高俅寡妇村的少年光绪之路:系统掌权和亲公主白发皇妃边关潜修十年,开局我举世无敌天幕:带三国英豪征服地球魂穿大武,制造步枪夺天下县令田文进之清河风云来到秦朝,只求华夏昌盛抱歉,我已不是原来的二皇子了!红楼梦贾赦要拨乱反正红楼:问君能有几多愁!明末逐鹿辽东大秦:化身人屠,祖龙求我别杀了大唐妙手回春大乾六皇子重回十八世纪,努力干死乾隆流放溯州称王,我直接拥兵百万!我去边疆做领主大汉捡尸帝王穿越成一品大将军三国:刘备辅翼,助他再造大汉痴傻二皇子,父皇求我快登基民间传奇故事集录水浒:窃国摘花,我乃大宋真皇帝寒门书生:出门捡个便宜小娇妻霸唐:日不落帝国玄德至水浒穿越之我来拯救大宋