UU文学 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

这番话从任何的学子的口中说出来,都多少有些不知好歹。

但这可是叶秋!

当他沉稳的话语配上一张清俊的脸庞,任何人都不会怀疑说这些话的真实性。

康德和拉波波特二人对视一眼,谁都没有说话,最后长长的叹了一口气,无不惋惜。

两个数学大拿心中很清楚,叶秋以后的前途不可限量,要是能够拜到他们的门下,那将会是一件天大的好事情。

但是活到了他们这种岁数,对于得失看得很开的,不想要拜师了,他们也不再强求。

陆晚晚和靳可竹、安娜三个女生在大礼堂里面呆着无趣,相约去逛街。

整个大礼堂里面就只剩下康德、叶秋、拉波波特、舒尔茨四个人。

四个人围在了桌子的旁边,有时候会聊着自己生活中遇到的琐事,有时候会聊着在数学中碰到等难题。

虽然叶秋和拉波波特、舒尔茨都是第一次见面,但是数学为他们搭建了一道十分美好的桥梁,让他们一见如故。

话语正酣,舒尔茨适时的提出来了一个问题。

“两位老师有一个问题,困惑了我很长时间了,叶秋兄弟你也帮忙参考一下。”

三个人齐刷刷的看向舒尔茨。

舒尔茨咳嗽了一声,便缓缓说道。

“最近我正在研究群论产生的历史,群论产生的历史之中有两个相对一样的置换群,但是是否能够出现一个n与n的质数相同,而后把置换群相互隔离?”

这个问题很是高深。

如果不懂得数学研究的人根本就不知道这个话到底在说什么。

叶秋听闻此言,闭上眼睛深深的陷入了沉思。

要弄明白舒尔茨的这个问题到底是什么意思,首先必须得明白群论产生的历史。

群论是法国数学家伽罗瓦的发明。

他用该理论,具体来说是伽罗瓦群解决了五次方程问题。

在此之前柯西阿贝尔等人也对群论作出了贡献,但是贡献有限,不能支撑后来的研究

最先产生的是n个文字的一些置换所构成的置换群,它是在研究当时代数学的中心问题即五次以上的一元多项式方程是否可用根式求解的问题时,经由j-l.拉格朗日、p.鲁菲尼、n.h.阿贝尔和e.伽罗瓦引入和发展,并有成效地用它彻底解决了这个中心问题。

某个数域上一元n次多项式方程,它的根之间的某些置换所构成的置换群被定义作该方程的伽罗瓦群。

1832年伽罗瓦证明了一元n次多项式方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为“可解群”,由于一般的一元n次方程的伽罗瓦群是n个文字的对称群sn,而当n≥5时sn不是可解群,所以一般的五次以上一元方程不能用根式求解。

伽罗瓦还引入了置换群的同构、正规子群等重要概念。应当指出,a-l.柯西早在1815年就发表了有关置换群的第一篇论文,并在此后的二十年间对置换群又做了很多工作。

至于置换群的系统知识和伽罗瓦用于方程理论的研究,由于伽罗瓦的原稿是他在决斗致死前夕赶写成的,直到后来才在c.若尔当的名着“置换和代数方程专论”中得到很好的介绍和进一步的发展。置换群是最终产生和形成抽象群的第一个最主要的来源。

在数论中,拉格朗日和c.f.高斯研究过由具有同一判别式d的二次型类,即f=ax^22bxycy^2,其中a、b、c为整数,x、y取整数值,且d=b^2-ac为固定值,对于两个型的"复合"乘法,构成一个交换群。

w.r.戴德金于1858年和l.克罗内克于1870年在其代数数论的研究中也引进了有限交换群。

以至有限群群论产生的历史是一个比较高深的数学问题。

数学家关心的是各元素间的运算关系,也即群的结构,而不管一个群的元素的具体含义是什么。举一个具体的例子,根据凯莱定理,任何一个群都同构于由群的元素组成的置换群。

于是,特别是对研究有限群来说,研究置换群就是一个重要的问题了。

如果能够彻底的解而开群论之间的运算关系,那么就可以把物理学和力学相结合起来。

通俗点来讲,如果真的能够解开了群论的历史影响,那么可以把力学和热量学相互转换。

就比如。

当一艘火箭发射在太空之中,本来又经历几万光年的时间才会抵达,抵达另外一颗星球。

但是只要进行力的互换,可能一秒钟或是一分钟就能够抵达下一个星球。

这是对人类利益是产生的一个极大的影响,如果真的能够不彻底的破解开立群论的历史问题,那么将是人类科技进步的一大步。

而这也就是目前舒尔茨所研究的问题。

叶秋咳嗽了一声,缓缓的说出自己的见解。

“要研究群论产生的历史影响,其实最关键的就是要懂得各个群论之间的相互力量转换,就比如a群论和b群论之间是否可以进行转换,但是转换的特定因素是什么?”

“此特定因素又可否在c群论和d群论之间转换?我化了一个特定的关系,是在此特定的关系是中a群论和b群论可以相互进行转换……”

不愧是天才,两个人聊天的时候毫无压力。

话没有说清楚,就能够明白对方的心意,舒尔茨直接把自己的转换故事写在了草稿纸上面,递给叶秋。

叶秋看着面前的转换公式长呼一口气。

这个这个转换公式十分复杂,他跳过了人们原有的逻辑,而是从一种杂乱无计的无章的逻辑入手。

叶秋不由得发出疑问。

“这个转换的公式并没有任何的逻辑,为什么可以成为a群论和b群论之间的支撑呢?”

“正是因为这个公式是杂毫无逻辑,所以才可以成为转换,从某种意义上来讲a群论和b群论之间本来就没有任何的关系和意义,我们如果非要找出一个特定的逻辑公式的话是找不出来的,还不如根据两个群论的特性找出一个杂乱无章的公式呢。”

舒尔茨本来就只是在发表自己的看法,可是这句话却给了自己极大的启发呢。

这样的公式转换是不是也可以运用在np完全问题中呢?

UU文学推荐阅读:被人拉入相亲群,我无敌你们随意记忆审判:那一刻,全国为他痛哭港片:我还没出位,老大先出殡了更适合华夏宝宝体质的高等世界皓月和正义重生18:从借钱炒期货开始暴富我的26岁总裁妻子让你拍篮协宣传片,你画灌篮高手警察你开挂了?刚入职就抓个通缉我的极品前妻们收手吧系统!别再逼我做渣男小巷人家:守护庄家?开局成孤儿谍战人生那年,村委换届暗黑江湖总要爱上一个人,为什么不能是我四合院:从1958开始全球性闹鬼事件穿越到未来,我有最强升级系统游戏制作:论玩家为何又爱又恨年下!开局相亲姐姐闺蜜人在娱乐圈,天后很凶带着空间穿八零,领着家人奔小康无双仙灵武者四合院:从卫生员开始的快乐人生民间高手,从街头卖艺开始全民转职:我背靠一个世界让我住在你的心里终极一班:我魅魔被美女们包围了世界大杂烩,主角大乱斗你都建国了,你说你是雇佣兵?是你要分手的,我走了你又哭啥?商海激情:触底反弹之超越剑御九霄:昆仑秘境传荒野求生之体修的日常重生之打造属于我商业帝国三年出狱妻子出轨?一无所有的他原来手眼通天!被青梅竹马拒绝后被神明赐下权柄驭手撸铁三百万次,我成了女儿的英灵一首青花瓷,我,掀起了国风狂潮东星乌鸦兑变,注重武力和谋略!吃校花软饭的我,创建护庭十三队灵气复苏,从虚拟现实开始全民:开局觉醒无限虫巢!开局继承九重雷刀,我横推万族镇国战医我把校花渣了,她还觉得我深情天灭真元我,祖龙!吞天噬地!
UU文学搜藏榜:重生之从做个好爸爸开始人在斗罗,开局被比比东活埋皇后成长手札不随心所欲能叫重生吗?掌欢完美战兵四合院:这个保卫员坏,痞,帅!梦游妈咪:谁是我爹地千树万树情话开疯狂从2000开始叫我女王(GL)赘婿之杀神回归县城青年之入世萌妻羞羞:BOSS,慢点撩!松小姐今天喝酒了吗千金大佬她slay全场小乞丐掀翻三界高武:刀镇星空故事无限我真不想当女主角都市霸道医仙人间凶狗直播:穿书炮灰反成人生赢家皇上今天掉马了吗重生七零我靠种田暴富了叶君临李子染全文免费阅读笔趣阁退婚后我嫁给了渣男他叔头条婚约都市崛起之开启万界交易序列为零东京泡沫后的文娱时代逍遥渔场妖孽男神在花都最废女婿战神她在娱乐圈杀疯了胭尘团宠寨主种田忙开局我被系统一直坑地府微信群军少,有点喜欢你娱乐之中年危机错婚试爱病娇惹不起重生2014:一个人的豪门想支持乡村教育,却成为商业大佬逍遥明星娶夫不易[穿书]重回1981从退婚开始不凡兵王我的篮球生涯养废青梅的我,只好负起责
UU文学最新小说:让开宠物店,你店里五毒俱全?全球首富:从摆地摊开始崛起救赎者的轮回挽歌美利坚卧底警探,我会以德服人重生到妻女自杀那天,我扛回二十万现金极品按摩师我靠预知独自升级,速通全球诡异富婆与穷小伙的暖情微光幼龙萝莉怎么养,在线等,急!摄影:十步存一天下宝鉴穿越从东北崛起都市:我的好感度能无限提现重生豪门太子爷,女神环绕特种兵重生回到校园开局上交核聚变,能给份工作吗?开局变女生,打穿异世高武:系统晚到,36岁才是闯荡的年纪重生仙帝归来破晓时我们转向东方歃血阴阳奇术纽约1990出门捡到宝,天上掉下个凝姐姐!重生了,我想见识娱乐圈的风景从兄弟到老婆变身后我被他宠上天天赋系统带我飞风流杀手说好的美食家,你让我摆摊卖泡面?被系统强迫成为大科学家刚重生就被绿!我竟成了赘婿点亮星星的使者天道神医港娱:谈钱可以,别谈感情我的寻宝江湖:魅影密码重燃九零年代非酋之王之倒霉系统出狱即无敌,前妻跪求我复婚重回80,成功从拒绝入赘开始荒野求生:张平漂流历险记每日盲盒,我赶山打猎喂饱全家!30岁退休,回小县城吃香喝辣千鉴宝影追尾后,白富美赖在我家不走了出狱后,捡了个高冷美娇妻万界交易:开局换到六十万野山参从零开始,纵横黑暗世界顶级四代,翻手为云覆手为雨神豪:退婚后,他惊艳了全世界娱乐圈演太监,这些武功你真会啊大学没毕业我把学妹带成了钓鱼佬